Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Sundari Bhaskaran, ${ }^{\text {a }}$

S. Selvanayagam, ${ }^{\text {a }}$
D. Velmurugan, ${ }^{\text {a }}$
K. Ravikumar, ${ }^{\text {b }}$
M. Anniyappan, ${ }^{c}$
D. Muralidharan ${ }^{c}$ and

P. T. Perumal ${ }^{\text {C }}$

${ }^{\text {a }}$ Department of Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, ${ }^{\text {b }}$ Laboratory of X-ray
Crystallography, Indian Institute of Chemical Technology, Hyderabad 500 007, India, and ${ }^{\text {c }}$ Organic Chemistry Division, Central Leather Research Institute, Adyar, Chennai 600 020, India

Correspondence e-mail: d_velu@yahoo.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.068$
ωR factor $=0.179$
Data-to-parameter ratio $=17.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

N-(4a-Morpholino-2,3,4,4a,9,9a-hexahydro1 H -xanthen-9-yl)phenylamine

In the title compound, $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{2}$, the pyran ring in the xanthene moiety adopts a half-chair conformation. The molecular structure is influenced by intramolecular N $\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds and the crystal structure is stabilized by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions.

Comment

An X-ray study of the title compound, (I), was of interest because xanthene derivatives have been well documented as biogenic precursors (Vinod \& Gupta, 1979) and neuroleptic (Lassen et al., 1980) and antiallergic (Pfister, 1980) agents. They also possess antiviral activity (Carr et al., 1976). These derivatives act as potent human CCRI receptor antagonists (Naya et al., 2003).

(I)

In the title molecule (Fig. 1), bond lengths in the aromatic rings (C and E), the cyclohexane ring (A) and the morpholine ring (D) have normal values (Allen et al., 1987). The geometry of the pyran ring in the xanthene moiety (Table 1) is comparable to that observed in other xanthene derivatives (Jeyakanthan et al., 1999; Miao et al., 1996). The sum of the bond angles around N 15 of $337.2(2)^{\circ}$ is indicative of the $s p^{3}$ character of the atom. The aromatic rings E and C are almost perpendicular to each other, with a dihedral angle of $85.5(1)^{\circ}$. The pyran ring in the xanthene moiety adopts a half-chair conformation, with asymmetry parameter $\Delta C_{2}(\mathrm{C} 7-\mathrm{C} 2)=$ 0.003 (1) (Nardelli, 1983). The cyclohexane ring (A) and the morpholine ring (D) both adopt chair conformations. The molecular structure is influenced by weak $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. The crystal structure is stabilized by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions involving the symmetry-related aromatic ring C (Table 2 and Fig. 2).

Experimental

A solution of 0.3 g of cyclohexanone, 0.27 g of morpholin and a catalytic amount of InCl_{3} in 20 ml of acetonitrile was refluxed for 3 h .

Received 7 July 2003
Accepted 4 August 2003
Online 15 August 2003

Figure 1
The molecular structure of the title compound, showing 30% probability displacement ellipsoids. H atoms have been omitted for clarity.

The reaction mixture was cooled to room temperature under a nitrogen atmosphere and 0.6 g of o-hydroxybenzylideneaniline was added. The reaction mixture was stirred at ambient temperature for 20 min . After completion of the reaction, the reaction mixture was quenched by addition of water and extracted with ethyl acetate. The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under vacuum. The crude crystalline product was recrystallized using ethyl acetate to yield the title compound. The melting point of the title compound is $429-431 \mathrm{~K}$.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{23} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{2} \\
& M_{r}=364.47 \\
& \text { Triclinic, } P \overline{1} \\
& a=9.6452(7) \AA \AA \\
& b=10.1247(8) \AA \\
& c=11.1168(9) \AA \\
& \alpha=81.359(1)^{\circ} \\
& \beta=80.165(1)^{\circ} \\
& \gamma=64.920(1)^{\circ} \\
& V=965.11(18) \AA^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.254 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 2317 \\
& \quad \text { reflections } \\
& \theta=2.3-27.2^{\circ} \\
& \mu=0.08 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Block, colourless } \\
& 0.26 \times 0.20 \times 0.16 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker SMART APEX CCD areadetector diffractometer ω scans
Absorption correction: none
6035 measured reflections
4223 independent reflections

$$
\begin{aligned}
& 3415 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.014 \\
& \theta_{\max }=28.0^{\circ} \\
& h=-12 \rightarrow 12 \\
& k=-11 \rightarrow 13 \\
& l=-14 \rightarrow 14
\end{aligned}
$$

Refinement

Refinement on F^{2}

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.068$
$w R\left(F^{2}\right)=0.179$
$S=1.02$
4223 reflections
244 parameters
H-atom parameters constrained

Figure 2
The packing of the molecules, viewed approximately down the a axis.

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

O1-C14	$1.369(2)$	C8-C9	$1.521(3)$
O1-C2	$1.440(2)$	$\mathrm{C} 9-\mathrm{C} 14$	$1.393(3)$
C2-N15	$1.479(2)$	$\mathrm{N} 15-\mathrm{C} 20$	$1.465(3)$
C2-C7	$1.540(3)$	$\mathrm{N} 15-\mathrm{C} 16$	$1.468(2)$
C7-C8	$1.535(3)$	$\mathrm{C} 17-\mathrm{O} 18$	$1.414(3)$
C8-N21	$1.439(3)$	$\mathrm{O} 18-\mathrm{C} 19$	$1.420(3)$
C20-N15-C16	$107.9(2)$	$\mathrm{C} 16-\mathrm{N} 15-\mathrm{C} 2$	$114.3(1)$
C20-N15-C2	$115.0(2)$		
O1-C2-N15-C16	$171.42(15)$	$\mathrm{C} 7-\mathrm{C} 8-\mathrm{N} 21-\mathrm{C} 22$	$151.6(2)$
C3-C2-N15-C16	$57.0(2)$	$\mathrm{C} 8-\mathrm{N} 21-\mathrm{C} 22-\mathrm{C} 27$	$-26.6(3)$

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 21-\mathrm{H} 21 \cdots \mathrm{~N} 15$	0.86	2.44	$2.949(3)$	118
$\mathrm{C} 20-\mathrm{H} 20 B \cdots \mathrm{O} 1$	0.97	2.35	$2.737(2)$	103
$\mathrm{C} 11-\mathrm{H} 11 \cdots \mathrm{O} 18^{\mathrm{i}}$	0.93	2.82	$3.458(3)$	126
$\mathrm{C} 12-\mathrm{H} 12 \cdots \mathrm{O} 18^{\mathrm{ii}}$	0.93	2.83	$3.524(3)$	132
$\mathrm{C} 27-\mathrm{H} 27 \cdots \mathrm{CgCl}^{\mathrm{iii}}$	0.93	2.87	$3.704(3)$	150

Symmetry codes: (i) $1-x,-y, 1-z$; (ii) $x-1,1+y, z$; (iii) $1-x, 1-y, 1-z \cdot \mathrm{CgC}$ denotes the centroid of aromatic ring C.

H atoms were positioned geometrically, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.93-0.98 \AA$ and $\mathrm{N}-\mathrm{H} 0.86 \AA$. They were allowed to ride on their parent atoms with the isotropic displacement parameter $U_{\text {iso }}(\mathrm{H})$ set at $1.2 U_{\text {eq }}(\mathrm{C}$ or N$)$. The final cycles of refinement showed the highest difference peak of $0.97 \mathrm{e}^{\circ} \AA^{-3}$, much larger than the absolute value of the deepest hole (-0.35 e \AA^{-3}). This peak was located at a distance of $1.27 \AA$ from both C8 and N21. The possibility of a disordered aminophenyl substituent (N21/C22-C27) was examined but we were unable to find a suitable disorder model. Reflections were measured to $\theta_{\text {max }}$ of 28.0° with 91% completeness, but the data are 97% complete to 25°.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 1990); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995).

SSN and DV thank the University Grants Commission (UGC), New Delhi, for financial support under the University With Potential For Excellence Programme.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bruker (2001). SMART (Version 5.625) and SAINT (Version 6.28a). Bruker AXS Inc., Madison, Wisconsin, USA.
Carr, A. A., Grunwell, J. F., Sill, A. D., Meyer, D. R., Sweet, F. W., Scheve, B. J., Grisar, J. M., Fleming, R. W. \& Mayer, G. D. (1976). J. Med. Chem. 19, 11421148.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Jeyakanthan, J., Shanmuga Sundara Raj, S., Velmurugan, D., Fun, H.-K. \& Murugan, P. (1999). Acta Cryst. C55, 1515-1517.
Lassen, N., Bogeso, K. P., Hansen, P. B., Buss, J. L. M. \& Bigler, A. J. (1980). Chem. Abstr. 93, $8028 f$.
Miao, F.-M., Zhang, L.-J., Wen, X., Zhou, W.-H., Niu, Z.-C., Han, J.-G. \& Liu, X.-L. (1996). Acta Cryst. C52, 700-702.

Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Naya, A., Ishikawa, M., Matsuda, K., Ohwaki, K., Saeki, T., Noguchi, K. \& Ohtake, N. (2003). Bioorg. Med. Chem. 6, 875-884.
Pfister, J. R. (1980). Chem. Abstr. 93, 239232j.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (1990). Acta Cryst. A46, C-34.
Vinod, G. \& Gupta, S. R. (1979). Bull. Chem. Soc. Jpn, 52, 3679-3681.

